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Abstract— With the increase in the use of mobile devices, there is need for accelerated studies on these systems to improve on the quality 

of service (QoS) provided to the users. Different methods have been used in signal modeling including deterministic and empirical models. 

This study is aimed at developing a universal wireless prediction model using Particle Swarm Optimization (PSO) trained modified Adaptive 

Neural Fuzzy Inference System (LOG10D-ANFIS) being an improvement to the original ANFIS structure for wireless communication 

propagation. This model is to combine all the deterministic and empirical models used in wireless propagation into one. In our study we have 

used eight of the models, as discussed under literature section, to show that this is possible. The mean square error (MSE), root mean 

square error (RMSE) and standard deviation (SD) of the predicted signal were determined and compared. The developed model, is very 

accurate in approximating the other models where we are getting errors of up to 10-15. Also this universal model eliminates the necessity of 

many input parameters associated with the individual models resulting to a requirement of just one input that is distance. This should be a 

big advantage to software developers who can use this model to come up with simulators for wireless propagation prediction. 

Keywords; QoS, ANFIS, PSO, LOG10D-ANFIS 

——————————      —————————— 

1 INTRODUCTION                                                                     

Wireless networks form one of the largest market segments 

of communication systems. Coverage in line of sight (LOS) en-

vironments is limited both by physical obstacles and structural 

barriers, while in built environments, the main obstacles are 

walls [1]. What is common for both is interference in the wire-

less spectrum. The most commonly used bands for wireless net-

works do not easily pass through the obstacles.  

ANFIS is one of the most current techniques used in function 

approximation besides other very many applications like clas-

sification. The technique is obtained by combining the Neural 

Networks and Fuzzy Logic concepts which are based on nu-

merical analysis and natural language respectively [3].  

PSO originally by Doctor Kennedy and Eberhart in 1995, used 

to train ANFIS and other AI processes is based on the intelli-

gence of swarms as they move in search of food [9].  
This study investigated the prediction of signal coverage of 

wireless networks using various models. From these models a 
single universal model based on PSO trained modified ANFIS 
was developed. 

1.1 Statement of the problem  

Wireless communication is increasingly becoming a very im-
portant concept in our lives at home and work equally. Scien-
tists have done and are still doing various studies in regard to 
their use and continue to do the same to ensure quality of ser-
vice (QoS) is improved to the ever growing number of users. 
However, all the known research undertaken in literature is 
based on single independent models. In view of this, the idea of 
also adding to the progressing research in this field led to this 
study. This led to the development of a universal model based 
on PSO trained modified ANFIS (LOG10D-ANFIS). 
 

1.2 Research objectives 

Main objective is aimed at developing a universal wireless pre-
diction model using Particle Swarm Optimization (PSO) trained 
Adaptive Neural Fuzzy Inference System (ANFIS). 
Specific objectives 

1. Analyze the different existing theoretical models.  

2. Obtain graphs comparing the performance of PSO 

trained LOG10D-ANFIS, LOG10D-ANFIS and ANFIS 

equivalent models. 

3. Obtain the RMSE, ME and SD values comparing the 

performance of PSO trained LOG10D-ANFIS, 

LOG10D-ANFIS and ANFIS equivalent models. 
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4. Develop a universal model based on the PSO trained 

LOG10D-ANFIS and the analyzed models. 

2 LITERATURE REVIEW 

2.1 Introduction  

Wireless networking works by sending radio transmissions on 

specific frequencies where listening devices can receive them. 

Antennas are also key components of these radio communica-

tion systems, picking up incoming signals or radiating outgoing 

signals [4], [5]. Some antennas, may be mounted externally 

while others are embedded inside the device's hardware enclo-

sure [2], [6]. Prediction modelling of the received signal 

strength by these devices is an important concept in the area of 

wireless communication. Many approaches have been used 

over the years as seen in [15]-[23]. Despite these models being 

effective no researcher has taught of developing a universal 

model.    

ANFIS combines the advantages of both neural network and 

fuzzy logic in its operation resulting to a powerful tool in ap-

proximating functions [3]. 

PSO finds the optimal solution by simulating the social behav-

ior of groups as fish schooling or bird flocking. A group can 

achieve the objective effectively by using the common infor-

mation of every particle (global), and the information owned by 

the particle itself (personal) [9]. 
 

2.2 Other models used in wireless signal prediction 

COST231 One-Slope Model  

This one of the empirical model which describe the signal level 

loss by empirical formulas with empirical parameters opti-

mized by measurement campaigns in various buildings to 

make the empirical parameters of the model as universal as 

possible. It is the simplest approach to signal loss prediction, 

since it is based only on the distance between the transmitter 

and the receiver. It does does not take into account the position 

of obstacles, the influence of which is respected only by the 

power decay factor of 2. Factor n and the signal loss at a dis-

tance d0 from the transmitter L(d) in equation (1) increases for 

a more lossy environment [15], [16], [17]. 

 

𝐿𝑂𝑆𝑀 = (𝑑0) + 𝑛10 (
𝑑

𝑑0
)      (1) 

where: LOSM = Predicted signal loss (dB)  

L0(d0) = Signal loss at distance d from transmitter (dB)   

n = Power decay factor   

d = Distance between antennas (m)   

d0 = Reference distance between antennas (m) 
 

 
Fig. 1: One Slope Model 

 

Dual-Slope Model 

The path loss in dB is given by experimentally. 

 

𝐿𝑑𝐵 = 𝐿0,𝑑𝐵 + {

10𝑛1𝑙𝑜𝑔10𝑑, 1𝑚 < 𝑑 ≤ 𝑑𝑏𝑝

10𝑛1𝑙𝑜𝑔10𝑑 + 10𝑛2𝑙𝑜𝑔10 (
𝑑

𝑑𝑏𝑝
) , 𝑑 > 𝑑𝑏𝑝

 (2) 

 

This model divides the distance into two sections. The break 

point distance dbp takes into account that in indoor environ-

ments the ellipsoidal Fresnel zone can be obstructed by the ceil-

ing or the walls, anticipating the LOS region: 

𝑑𝑑𝑝 =
4ℎ𝑏ℎ𝑚

𝜆
      (3) 

 

where hb and hm represent the shortest distance from the 

ground or wall of the access point (AP) and station (STA), re-

spectively [25]. 
 

 
Fig. 2: Dual Slope Model 
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Partitioned Model 

This model divides the distance into four sections with different 

loss exponents according to previous field measurement cam-

paigns [15]. The path loss in dB is given by; 

𝐿𝑑𝐵 = 𝐿0,𝑑𝐵 +

{
 
 

 
 

20𝑙𝑜𝑔10𝑑, 1𝑚 < 𝑑 ≤ 10𝑚

20 + 30𝑙𝑜𝑔10 (
𝑑

10
) , 10𝑚 < 𝑑 ≤ 20𝑚

29 + 60𝑙𝑜𝑔10 (
𝑑

20
) , 20𝑚 < 𝑑 ≤ 40𝑚

47 + 120𝑙𝑜𝑔10 (
𝑑

40
) , 𝑑 > 40𝑚

 (4) 

 

Average Walls Model  

This model is based on the Cost-231 multi-wall where the loss 

due to obstructing walls is aggregated into just one parameter 

L. For a single floor environment, the estimated path loss is 

given by; 

 
𝐿𝑑𝐵 = 20𝑙𝑜𝑔10𝑑 + 𝑘𝑤𝐿𝑤     (5) 

 

where kw denotes the number of penetrated walls. In order to 

determine the parameter Lw, each wall obstructing the direct 

path between the receiver and the transmitter antennas must 

have its loss measured as follows. 

The loss of the first wall in dB is given by: 

 

𝐿1 = 𝐿 − 𝐿0,𝑑𝐵 − 20𝑙𝑜𝑔10𝑑     (6) 

 

Where L0,dB is the path loss obtained at 1 meter distant from the 

transmitter; L denotes the measured total loss from 1 meter dis-

tant after the obstructing wall. For the second wall the loss of 

the first wall must also be taken into account. The loss in dB of 

the second obstructing wall can be estimated as; 

 

𝐿2 = 𝐿 − 𝐿0,𝑑𝐵 − 20𝑙𝑜𝑔10𝑑 − 𝐿1    (7) 

 

Keeping on the above methodology, the ith wall loss is given 

by 

 

𝐿𝑖 = 𝐿 − 𝐿0,𝑑𝐵 − 20𝑙𝑜𝑔10𝑑 − ∑ 𝐿𝑗
𝑖=1
𝑗=1    (8) 

 

where the sum spans the losses of walls obtained previously. 

After all wall losses of the environment had been obtained, then 

the wall losses average value is computed and assigned to the 

parameter Lw [15]. 

 

Multi-Wall Model  

Due to the inhomogeneous structure of a building with long 

waveguiding corridors or large open spaces on one side and 

small complex rooms with many obstacles on the other side, the 

more accurate, but still partly empirical, Multi Wall model 

(MWM) employing a site-specific building structure descrip-

tion can be used instead of the OSM.  

This model takes into account wall and floor penetration loss 

factors in addition to the free space loss as given in equation (9). 

The transmission loss factors of the walls or floors passed by the 

straight-line joining the two antennas are summed into the total 

penetration loss LWalls as given in (10) or L (11), respectively. De-

pending on the wall, either homogenous wall or individual 

transmission loss factors can be used. The more detailed the de-

scription of the walls and floors, the better the prediction accu-

racy. The penetration losses are represented as; 

 

𝐿𝑀𝑊𝑀 = 𝐿1 + 20𝑙𝑜𝑔10(𝑑) + 𝐿𝑊𝑎𝑙𝑙𝑠 + 𝐿𝐹𝑙𝑜𝑜𝑟𝑠                (9) 

𝐿𝑊𝑎𝑙𝑙𝑠 = ∑ 𝑎𝑤𝑖𝑘𝑤𝑖
𝑙
𝑖=1                 (10) 

𝐿𝑊𝑎𝑙𝑙𝑠 = 𝑎𝑓𝑘𝑓                 (11) 

 

LMWM is the Predicted signal loss (dB)   

L1 is the Free space loss at a distance of 1m from transmitter (dB) 

LWalls = Contribution of walls to total signal loss (dB)   

LFloors = Contribution of floors to total signal loss (dB)   

awi = Transmission loss factor of one wall of i-th kind (dB)  

kwi = Number of walls of i-th kind    

i = Number of wall kinds  

af = Transmission loss factor of one floor (dB)  

kf = Number of floors  

 

Its results are more accurate than those of OSM since it consid-

ered existing obstales. The computation time of the MWM is 

short, and the sensitivity of the model to the accuracy of the de-

scription of the building is limited due to the simple considera-

tion of only the number of obstacles passed by a straight line. 

 
Fig. 3: MW Model  

 

 

 

Okumura-Hata model 

The Okumura-Hata model is based on Okumura’s analysis of 

path-loss characteristics based on a large amount of experi-
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mental data collected around Tokyo, Japan. He selected propa-

gation path conditions and obtained the average path-loss 

curves under flat urban areas. After which he applied several 

correction factors for other propagation conditions, such as: 

i. Antenna height and carrier frequency  

ii. Suburban, quasi-open space, open space, or hilly ter-

rain areas 

iii. Diffraction loss due to mountains  

iv. Sea or lake areas  

v. Road shape 

Hata derived empirical formulas for the median path loss to fit 

Okumura curves as represented in Fig. 4. Hata’s equations are 

classified into three models as given in equation equations (12), 

(13) and (14) for rural, sub-urban and urban environments re-

spectively. 

Urban Area 
L50 = 69.55 + 26.16logfc + (44.9 − 6. .55loghb)logd −

13.82loghb − a(hm) dB    (12) 

Where: 

𝑎(ℎ𝑚)=Correction factor (dB) for mobile antenna 

height 

L50 = medium path loss 

hb = base station antenna height 

Fc = carrier frequency 

hm = MS antenna height 

d = distance between antennas 

Sub-urban areas 

L50 sub urban = L50 urban − 2 [log (
FC

28
)
2

− 5.4]            (13) 

Rural 
L50 rural = L50 urban − 4.78(log Fc)

2 + 18.33logFc −

40.94dB                 (14) 

 
Fig. 4: Hata-Okumura Model  

 

COST-231 Model 

COST-231 Model is a combination of empirical and determinis-

tic models for estimating the path loss in an urban area over the 

frequency range of 800MHz to 2000MHz. The model is used 

primarily in Europe for the GSM 1800 system. According to [2] 

it has the following working parameters and mathematical rep-

resentations. 

 

L0 = 4 - 0.114*(φ-55);               (15) 

Lf = 32.4 + 20*log10(d) + 20*log10(fc);             (16) 

Lrts = -16.9 - 10*log10(W) + 10*log10(fc) + 20*log(dhm) + 

L0;                        (17) 

Lbsh = -18*log10(11+dhb);               (18) 

kd = 18 - 15*dhb/dhm;               (19) 

ka = 54 - 0.8*hb;                (20) 

kf = 4 + 0.7*((fc/925)-1);               (21) 

Lms = Lbsh + ka + kd*log10(d) + kf*log10(fc) - 9*log10(b);

                             (22) 

dhm = hr - hm;                 

dhb = hb -hr;                (23) 

𝐿50 = Lf + Lrts + LmsdB               (24) 

Where: 

fc = carrier frequency 

W = street width (m) 

b = distance between building along radio path (m)  

d= separation between transmitter and receiver (km) 

hr = average building height (m) 

hb = base station antenna height 

hm = MS antenna height 

φ = incident angle relative to the street 

𝐿𝑓 = Free space path loss = 32.44 + 20logfc + 20logd 

𝐿𝑟𝑡𝑠 = roof top to street diffraction and scattering 

losses 

𝐿𝑚𝑠 = Multiscreen losses 

 
Fig. 5: COST231 Model  

 

COST231-HATA Model 

The COST231-HATA Model is an improvement Hata model to 

extend the frequency of operation [2]. The model is used pri-

marily in Europe for the GSM 1800 system [2]. Its equations as 
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well as graphical representations are given in equations (25) to 

(29) and Fig. 6. 

ahm1 = (hm*((1.1*(log10(fc))) - 0.7)) - ((1.56*(log10(fc))) - 0.8); mo-

bile antenna height correction factor  (25) 

Metropolitan area 

Lcm = 46.3 + (33.9*(log10(fc))) - (hb*13.82) - ahm1 + ((44.9-

(6.55*(log10(hb)))).*(log10(d))) + 3;   (26) 

rLcm = Pt + Gt + Gr - Lcm+30;rssi in metropolitan area(27) 

Sub-urban area 

Lcsu = 46.3 + (33.9*(log10(fc))) - (hb*13.82) - ahm1 + ((44.9-

(6.55*(log10(hb)))).*(log10(d)));   (28) 

rLcsu = Pt + Gt + Gr - Lcsu+30; rssi in sub-urban area 

      (29) 

 
 

Fig. 6: COST231-Hata Model RSSI versus distance 

 

Artificial Neural Networks 

Artificial Neural Network based models use the concept of liv-

ing organisms’ behavior to solve problems [13]. They can be 

trained to understand a given environment, approximate the 

relation that can exist between a given input and output and 

operate based on a number of inputs and one output [18]. The 

inputs can be in a complex environment where the output is the 

path loss. This complex environment includes topographical 

and morphological data in terms of; antenna heights, distance, 

frequency and obstacles in the indoor and outdoor environ-

ments [19]. Because of the several input parameters one might 

not be able to determine an exact analysis function to transform 

an input to an output of propagation loss [20]. This led to the 

development and use of ANN models which are able to learn 

through training and give a particular output for a given set of 

inputs. The training is done using different training methods. 

The actual output is compared to the desired output target and 

an error determined. The error is reduced to a minimum by 

changing the weights and biases of a neural network. This is 

done in the process of training the network. The network per-

formance is based on the mean absolute error, root mean square 

and standard deviation. 

 

All the models discussed above are not based on any universal-

ity which our model is trying to implement. According to [14] 

and to the best of our knowledge, there is no exixting universal 

model. 

3 PROPOSED MODEL 

3.1 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Adaptive Neuro-Fuzzy Inference System (ANFIS) was first pro-

posed by Jang in [7]. It combines the two concepts Fuzzy Logic 

(FL) and Artificial Neural Network (ANN) which captures their 

strengths and reduces the limitations of both techniques for 

building Inference Systems (IS) with better results. The Fuzzy 

logic concept deals with fuzzy set theory that relates to classes 

of objects with boundaries whose membership is a matter of de-

gree. It can also be seen as a platform that computes with words 

instead of numbers which is closer to human language and 

makes use of tolerance for imprecision, thus lowering the solu-

tion cost [8]. As indicated in 9) above Artificial Neural Net-

works consist of interconnected simple processing elements 

that operate simultaneously in parallel modeling the biological 

nervous system. These networks are able to learn from input 

data by modifying the values of the connections referred to as 

weights between the elements as the error is reduced. These 

two artificial intelligence based concepts when merged together 

they offer the fuzzy logic knowledge representation that makes 

inferences from observations and the neural networks learning 

capability. This results to a very powerful system with many 

applications including function approximation which we are 

using it for [23].   

   

3.2 Basic ANFIS Architecture  

The ANFIS architecture used in this research is based on type 3 

fuzzy inference system (other popular types are the type 1 and 

type 2) [22]. In the type 3 inference system, the Takagi and 

Sugeno's (TKS) if-then rules are used [3]. The output of each 

rule is obtained by adding a constant term to the linear combi-

nation of the input variables. The final output is then computed 

by taking the weighted average of each rule's output. This type 

3 ANFIS architecture with two inputs (x and y) and one output, 

z, is shown in Fig. 7. 
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Fig. 7. Type 3 ANFIS Architecture. 

 

The ordinary rule representation of the ANFIS is given as: 
𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑧1 =  𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 
𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑧2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

 

 

3.3 PSO trained LOG10D-ANFIS universal model 

In our improved ANFIS, the type 3 ANFIS architecture with one 

input distance (x) and one output, RSSI (z), is shown in Fig. 8. 

The input is passed through a logarithmic function before it 

goes to layer 1 where the premise parameters are modified us-

ing PSO. This is to imitate the natural behavior of RSSI with re-

spect to distance based on the inverse square law. In layer 4 

where the consequent parameters are modified using PSO, the 

distance input x is also passed through the logarithmic func-

tion. 

A1

A2
TT

TT

N

N

Layer 1

Layer 2 Layer 3

Layer 4

Layer 5
x

W1

W2

z

x

y

x
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consequent parameters 
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PSO generated a, b and c 
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Fig. 8. Modified type 3 ANFIS Architecture. 

 
𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑙𝑜𝑔10𝑥 𝑖𝑠 𝐴1 𝑡ℎ𝑒𝑛 𝑧1 = 𝑝1𝑙𝑜𝑔10𝑥 + 𝑟1 
𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝑙𝑜𝑔10𝑥 𝑖𝑠 𝐴2 𝑡ℎ𝑒𝑛 𝑧2 = 𝑝2𝑙𝑜𝑔10𝑥 + 𝑟2 

  x=distance and z=rssi 

 

The ANFIS structure is the functional equivalent of a super-

vised, feed-forward neural network with one input layer, three 

hidden layers and one output layer, whose functionality are as 

described below:  

 

Layer 1 (Fuzzy Layer): Every node in this layer is an adaptive 

layer that generates the membership grades of the input vec-

tors. Usually, a bell-shaped (Gaussian) function with maximum 

equal to 1 and minimum equal to 0 is used for implementing 

the node function: 

 

𝑂𝑖
1 = 𝑓(𝑥, 𝑎, 𝑏, 𝑐) = 𝜇𝐴𝑖(𝑥) =

1

1+|(𝑥−𝑐𝑖) 𝑎𝑖|⁄ 2𝑏𝑖
  

𝜇 𝐴𝑖(𝑥) = exp {− [(
𝑥−𝑐𝑖

𝑎𝑖
)
2

]
𝑏𝑖

} (30) 

   

  

Where 𝑂𝑖
1 is the output of the 𝑖𝑡ℎnode in the first layer,  𝜇𝐴𝑖(𝑥) 

is the membership function of input   in the linguistic varia-

ble 𝐴𝑖 . The parameter set {𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖} are responsible for defining 

the shapes of the membership functions. These parameters are 

called premise parameters.   

 

Layer 2 (Product Layer): Each mode in this layer determines the 

firing strength of a rule by multiplying the membership func-

tions associated with the rules. The nodes in this layer are fixed 

in nature. The firing strength of a particular rule (the output of 

a node) is given by: 

 

𝑤𝑖 = 𝑂𝑖
2 = 𝜇𝐴𝑖(𝑥). 𝜇𝐵𝑖(𝑦), 𝑖 = 1, 2  (31) 

 

Any other T-norm operator that performs fuzzy AND opera-

tion can be used in this layer.  

 

Layer 3 (Normalized Layer): This layer consists of fixed nodes 

that are used to compute the ratio of the ith rule's firing strength 

to the total of all firing strengths: 

 

�̅� = 𝑂𝑖
3 =

𝑤𝑖

𝑤1+𝑤2
 , 𝑖 = 1, 2,   (32) 

 

The outputs of this layer are otherwise known as normalized 

firing strength for convenience.  

 

Layer 4 (Defuzzify Layer): This is an adaptive layer with node 

function given by: 

 

𝑤𝑖̅̅ ̅𝑧𝑖 = 𝑂𝑖
4 = 𝑤𝑖̅̅ ̅(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)  (33) 

 

This layer essentially computes the contribution of each rule to 

the overall output. It is defuzzification layer and provides out-

put values resulting from the inference of rules. The parameters 

in this layer {𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖} are known as consequent parameters.  

 

Layer 5 (Total Output Layer): There is only one fixed node in 

this layer. It computes the overall output as the summation of 

contribution from each rule: 

 

∑ 𝑤𝑖̅̅ ̅𝑧𝑖𝑖 = 𝑂𝑖
5 = ∑

𝑤𝑖𝑧𝑖

∑ 𝑤𝑖𝑖
𝑖    (34) 

 

3.4 Particle Swarm Optimization (PSO) 

PSO is a global optimization technique that was developed by 

Eberhart and Kennedy in 1995 [12], the underlying motivation 

of PSO algorithm was the social behavior observable in nature, 
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such as flocks of birds and schools of fish in order to guide 

swarms of particles towards the most promising regions of the 

search space. PSO exhibits a good performance in finding solu-

tions to static optimization problems where it is considered to 

be better than other algorithms like Genetic Algorithm [14]. It 

exploits a population of individuals to synchronously probe 

promising regions of the search space. In this context, the pop-

ulation is called a swarm and the individuals (i.e. the search 

points) are referred to as particles. Each particle in the swarm 

represents a candidate solution to the optimization problem. In 

a PSO system, each particle moves with an adaptable velocity 

through the search space, adjusting its position in the search 

space according to own experience and that of neighboring par-

ticles, then it retains a memory of the best position it ever en-

countered, a particle therefore makes use of the best position 

encountered by itself and the best position of neighbors to po-

sition itself towards the global minimum. The effect is that par-

ticles “fly” towards the global minimum, while still searching a 

wide area around the best solution [11]. The performance of 

each particle (i.e. the “closeness” of a particle to the global min-

imum) is measured according to a predefined fitness function 

which is related to the problem being solved. For the purposes 

of this research, a particle represents the weight vector of NNs, 

including biases. The dimension of the search space is therefore 

the total number of weights and biases [11]. 

The iterative approach of PSO can be described by the fol-

lowing steps: 

Step 1: Initialize a population size, positions and veloc-

ities of agents, and the number of weights and biases. 

Step 2: The current best fitness achieved by particle p 

is set as pbest. The pbest with best value is set as gbest 

and this value is stored. 

Step 3: Evaluate the desired optimization fitness func-

tion 𝑓𝑝 for each particle as the Mean Square Error 

(MSE) over a given data set. 

Step 4: Compare the evaluated fitness value 𝑓𝑝 of each 

particle with its pbest value. If 𝑓𝑝< pbest then pbest = 𝑓𝑝 

and bestxp= 𝑥𝑝,  𝑥𝑝 is the current coordinates of particle 

p, and bestxp is the coordinates corresponding to par-

ticle p’s best fitness so far. 

Step 5: The objective function value is calculated for 

new positions of each particle. If a better position is 

achieved by an agent, pbest value is replaced by the 

current value. As in Step 1, gbest value is selected 

among pbest values. If the new gbest value is better than 

previous gbest value, the gbest value is replaced by the 

current gbest value and this value is stored. If 𝑓𝑝< gbest 

then gbest = p, where gbest is the particle having the 

overall best fitness over all particles in the swarm. 

Step 6: Change the velocity and location of the particle 

according to Equations (35) and (36), respectively. 

Step 7: Fly each particle p according to Equation (35).  

Step 8: If the maximum number of predetermined iter-

ations (epochs) is exceeded, then stop; otherwise Loop 

to step 3 until convergence.  

 

𝑉𝑖 = 𝑤𝑉𝑖−1 + 𝑎𝑐𝑐 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑏𝑒𝑠𝑡𝑥𝑝 − 𝑥𝑝) 

                            +𝑎𝑐𝑐 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑏𝑒𝑠𝑡𝑥𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑝) (35) 

 

Where acc is the acceleration constant that controls how far 

particles fly from one another, and rand returns a uniform 

random number between 0 and 1. 

 

𝑥𝑝 = 𝑥𝑝𝑝 + 𝑉𝑖     (36) 

 

𝑉𝑖  is the current velocity, 𝑉𝑖−1 is the previous velocity, 𝑥𝑝 is the 

present location of the particle, 𝑥𝑝𝑝 is the previous location of 

the particle, and i is the particle index. In step 5 the coordinates 

best𝑥𝑝 and bestxgbest are used to pull the particles towards the 

global minimum [11]. 

 

3.5 ANFIS learning by PSO 

The training and validation processes are among the important 

steps used to develop an accurate process model using ANFIS 

where a set of input-output patterns is repeated to the ANFIS 

in the training process [10]. The weights of all the interconnec-

tions between neurons are adjusted repeatedly until the 

specified input yields the desired output. From these iterations, 

the ANFIS learns the right input-output response behavior [11]. 

PSO is employed for updating the ANFIS parameters where 

ANFIS has two types of parameters which need training i.e. the 

antecedent part parameters and the conclusion part parame-

ters. It is assumed that the membership functions are Gaussian 

as in equation 30, and their parameters are {ai, bi, ci}, where ai is 

the variance of membership functions, ci is the center of mem-

bership functions (MFs) and bi a trainable parameter. The pa-

rameters {pi, qi, ri} of conclusion part are also trained [11]. 
 

3.6 Applying PSO for Training ANFIS parameters  

As indicated above there are 3 sets of trainable parameters in 

antecedent part {𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖} where each of these parameters has N 

particles which represents the number of MFs. The conclusion 

parameters ({𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖}) are also trained during optimization al-

gorithm. They are also N particles, where the fitness is defined 

as root mean square error (RMSE) [11]. In the first step the pa-

rameters are initialized randomly after which they are updated 

using PSO algorithms. The parameters sets are being updated 

in each iteration according to the fitness function RMSE [11], 

[21]. 
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Initialization

START

Evaluate the initial particles to get pbest and gbest

Next iteration t=t+1

Get particle positions

Evaluate updated particles to get new pbest and gbest

Update Fuzzy set parameters a, b, c, p, q and r to build 

Fuzzy MF model

Stopping 

criteria 

satisfied?

Get the optimal Fuzzy set values

END

No

Yes

 
Fig. 9: ANFIS training with PSO flowchart 

 

3.7 Evaluation Criteria 

The performance of the proposed approach will be evaluated 

by measuring the estimation accuracy. The estimation accuracy 

can be defined as the difference between the actual and esti-

mated values. The first typical fitting criterion (MSE) is defined 

as in Equation (37): 

 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1    (37) 

 

where N is the total number of data, y is actual target value, and 

�̂� its estimated target value. 

The initial values for weights will randomly be assigned within 

the range [-1; 1]. The training accuracy is expressed in terms of 

the mean absolute error, standard deviation (SD) and root mean 

squared error (RMSE). The absolute mean error (ME) is ex-

pressed as 

 

𝑒𝑖 = |𝑃𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑃𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑|, 

�̅� =
1

𝑁
∑ 𝑒𝑖
𝑁
𝑖=1 ,    (38) 

 

where terms target and simulated denote received signal 

strength that are obtained by model under cosideration and 

simulated by PSO trained modified ANFIS, while N is total 

number of samples. Standard deviation is given by 

𝜎 = √
1

𝑁−1
(𝑒𝑖 − �̅�)

2    (39) 

 

The root mean squared error (RMSE) is calculated accord-

ing to the expression 

 

𝑅𝑀𝑆𝐸 = √𝜎2 + �̅�2    (40) 

 

Data analysis 

For this study, the content analysis technique was employed to 

analyze the data. Matlab graphical representation techniques 

were used to analyze quantitative data. The full analysis on the 

key findings of this study is presented in the section below. 

 

4 FINDINGS AND DISCUSSIONS 

4.1 Results 

Based on the Matlab analysis, the following tables and graphs 

were generated for training and testing. 

 

Table 1: Training performance comparison of One Slope ANFIS, 

LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction 

models 

 RMSE ME SD R2 

ANFIS 0.3180 0.2315 0.2183 0.9983 

LOG10D-

ANFIS 

1.17e-07 7.60e-08 8.84e-08 1 

LOG10D-

PSO-ANFIS 

4.74e-15 2.95e-15 3.70e-15 1 

 

Table 2: Testing performance comparison of One Slope ANFIS, 

LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction 

models  

 RMSE ME SD R2 

ANFIS 0.3146 0.2302 0.2148 0.9983 

LOG10D-

ANFIS 

1.16e-07 7.59e-08 8.83e-08 1 

LOG10D-

PSO-ANFIS 

4.72e-15 2.91e-15 3.72e-15 1 
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Fig. 10: OSM and LOG10D-ANFIS training and testing 

 

 
Fig. 11: OSM ANFIS, LOG10D-ANFIS and LOG10D-PSO-AN-

FIS training and testing errors 

 

 
Fig. 12: OSM LOG10D-ANFIS and LOG10D-PSO-ANFIS train-

ing and testing errors 

 

Table 3: Training performance comparison of Okumura-Hata 

Model Rural ANFIS, LOG10D-ANFIS and LOG10D-PSO-AN-

FIS RSSI prediction models 

 RMSE ME SD R2 

ANFIS 1.8957 0.8877 1.6762 0.9938 

LOG10D-

ANFIS 

7.75e-07 5.62e-07 5.34e-07 1 

LOG10D-

PSO-ANFIS 

1.09e-14 4.34e-15 1.00e-14 1 

 

Table 4: Testing performance comparison of Okumura-Hata 

Model Rural ANFIS, LOG10D-ANFIS and LOG10D-PSO-AN-

FIS RSSI prediction models  

 RMSE ME SD R2 

ANFIS 1.6473 0.8767 1.3967 0.9953 

LOG10D-

ANFIS 

7.75e-07 5.62e-07 5.34e-07 1 

LOG10D-

PSO-ANFIS 

1.01e-14 3.71e-15 9.43e-15 1 

 

 
Fig. 13: OSM and LOG10D-ANFIS training and testing 
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Fig. 14: HORM ANFIS, LOG10D-ANFIS and LOG10D-PSO-

ANFIS training and testing errors 

 

 
Fig. 15: HORM LOG10D-ANFIS and LOG10D-PSO-ANFIS 

training and testing errors 

 

Fig. 10 is the training and testing of the predicted signal using 

PSO trained ANFIS, prediction tool for OSM. The variation is 

smooth and very close to the calculated values. Fig.s 11 and 12 

indicate the training and testing errors variation with distance. 

The different parameters obtained by comparing the measured 

and predicted values for the training and testing plots are given 

in tables 1 and 2. The same analysis is done for Hata-Okumura 

Rural model and all the other models discussed under literature 

review where the RMSE values were found to be close to each 

other in the range of 10-15 for the improved ANFIS. Fig.s 13 to 

15 and tables 3 and 4 show the performance of Hata-Okumura 

Rural model.  
 

4.2 The universal model 

Based on the results above and the resulting premise and con-

sequent parameters, a universal model is developed. For the 

OSM and Hata-Okumura Rural model the generated premise 

and consequent parameters are given in the tables 5 and 6 be-

low. The parameters for all the other models discussed above 

were also generated with similar results but only the two have 

been indicated in this paper. 

 

Table 5: One Slope LOG10D-PSO-ANFIS RSSI prediction model 

premise and consequent parameters after training 

 

 

Table 6: Hata-Okumura Rural LOG10D-PSO-ANFIS RSSI pre-

diction model premise and consequent parameters after train-

ing 

  

Using modified ANFIS PSO trained model, the individual 

membership parameters for each model are obtained through 

training. Each of the obtained membership parameters, can 

then be applied to a single ANFIS model depending on the ap-

plication of the model. Fig. 16 shows a representation of the uni-

versal model. The model can be used for all environments and 

all frequencies.  

 

PSO Trained Modified 

ANFIS

OSM 

Parameters

COST231

Parameters

HATA-

OKOMURA

Parameters

Input distance

Output RSSI

 
Fig. 16: PSO trained modified ANFIS universal model 

 Premise Consequent 

 a b c p r 

LOG10D

-PSO-

ANFIS 

-30.404 -44.484 -17.151   -39.808 -19.386 

-21.264 -16.437 -23.249 -20.000 -12.044 

-26.643 -33.441 -12.943 -38.469 -22.633 

 Premise Consequent 

 a b c p r 

LOG10D

-PSO-

ANFIS 

-163.79   -60.770  -35.921 -201.00 -100.42  

-136.45 -140.11 -140.25 -56.028 -128.39   

-142.26  -69.099 -55.575   -46.037 -200.77 

1149

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 10, Issue 11, November-2019                                                                                         
ISSN 2229-5518 
 

IJSER © 2019 

http://www.ijser.org  

5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusion 

From the analysis performed as a result thereof, it can be stated 

that the power of a signal transmitted decreases with increase 

in distance from the source for both predicted and calculated 

values.  

The values obtained above indicate the closeness of predicted 

to the target values indicating that the PSO trained ANFIS is 

very accurate in approximating the different wireless predic-

tion models. This can be used as a universal theoretical predic-

tion model instead of using the individual models mentioned 

above.  
 

5.2 Areas of further study   

Future research should include the use of different training 

methods and compare the resulting parameters. Implementa-

tion of the model in software as simulator can also be done in 

future. 
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